3 &) |»___|
do !

USAAVLABS TECHNICAL REPORT 68-22C

N
N
' g IN-FLIGHT MEASUREMENT AND CORRELATION WITH
a THEORY OF BLADE AIRLOADS AND RESPONSES
< ON THE XH-51A COMPOUND HELICOPTER ROTOR

)

YOLUME

: THEORETICAL PREDICTION OF AIRLOADS AND STRUCTURAL
LOADS AND CORRELATION WITH FLIGHT TEST MEASUREMENTS
.
J. £ Swears
% My 1958
U. S. ARMY AVIATION MATERIEL LABORATORIES
FORT EUSTIS, VIRGINIA

CONTRACT DA 44-177-AMC-357(T)

. LOCKHEED-CALIFORNIA COMPANY TR 6
BURBANK, CALIFORNIA S

This document has been approved
for public release and sale; its
distribution is unlimited.

VHEAE S redmetnal wie te o, .,
e R ot i
BRI Ao R G S AT




Disclaimers
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Under Army contract, the Lockheed Aircraft Corporation has con-
ducted an investigation of blade aerodynamic pressures and strains
and other assocfated flight characteristics on an XH-51A compound
helicopter. The flight tests and theoretical analyses which were
performed during the program were monitored by Army personnel, and
the final report has been reviewed to ensure basic technical
accuracy.
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ABSTRACT

This report presents the results of a two-phase research program ccusist-
ing of (1) in-flight measurement of aerodynamic pressures and structurai
loeds on a compound, rigid-rctor helicopter and (2) correlation of these
data with theoretical results.

Flight test data obtained in Phase I and recorded on sn oscillograph were
read on an oscillograph reading machine and were processed in an automatic
data reduction program. This data processirg consisted of integration of
the pressure Jata to obtain the distribution of aerodynamic lift and
pitching moments over the rotor blade, as functions of azimuth position.
Airload and structural load data were harmonically analyzed.

Output of the data reduction program was used in Phase II as input to the
correlation program. The measured airlnrads were used to compute the theo-
retical bending and torsion responses or the blade. The measured torsion
moments were used in the theoretical prediction of the airlouds. The

results of the applied theories are compared with the flight measurements.
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FOREWORD

This report describes a two-phase research program ccnsisting of (1) flight
test measurements of helicopter rotor blade structural loeds and serody-
namic pressures and (2) correlation cf these measurements with data obtained
from current theories. This research program was conducted by the TLockheed-
California Company under Contract DA Lb-177-AMC-357(T) to the U.S. Army
Aviation Materiel Laborastories (USAAVLABS}), Fort Eustis, Virginia.

The research program was performed during the period from Jume 1966 to
October 1967. Technical monitoring of the project for USAAVLABS was by

W. E. Nettles.

The report covering the program is presented ic three volumes. Volume I
is entitled "Measurement and Data Reduction ¢? Airleoads and Structural
Loads". It contains the main body cf the report plus Appendixes I through
IV. Volume ITI contains Appendixes V through IX, with all flight test data
in tabuler form. The correlation of the measured airlcads and structural
loads with theoretical data is covered in Volume III, "Theoretical
Predicticn of Airloads and Structural Iocads and Correlation with Flight

Test Measurements”.

The Lockheed program was under the technical direction of A. W. Turner and
W. E. Spreuer, engineering mansgers, and J. E. Sveers, project leader. The
test pllot was I. Goudey. Additional Lockheed personnel associated with

the program inciuded W. H. Foulke and R. A, Berry, flight test;
C. J. Buzzetti, E. A. Bartsch, S. H. Lomax, and T. H. Oglesoy, structural

flight measurement; R. H. Cook and R. G. Murison, instrumentation;
R. D. Baker and W. C. Weddle, data processing; R. E. Donham and D. E. Janda,
rotary ving dynamics; C. H. Ranschau, programming; and R. P. Pcal, editor.

Appreciation 1s due USAAVLABS for their help in providing assistance and
advice in planning and executing the entire research program.
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INTRODUCTION

The problem of analytically predicting loading conditions of helicopter
rotor blades in high speed flight consists of three parts:

To find the conditions for trim, i.e., vehicle attitude and blade

°
control angles.

e To find the distribution of airloads over the blades as a function
of azimuth position.

e To find the response of the rctor system to a given sirload dis-

tribution.

The three parts of the analysis are interrelated, since the trimmed condi-
tion of blade control angles is determined by the airloads developed, and
because the blade hub stiffness is normally low enough to result in blade
motions of such magnitude as to affect the airloads distribution substan-
tially. Furthermore, the airloads d-» aot vary linearly with the control
angles or the blade response. Starting with a given weight distribution
and flight speed, therefore, reguires an iteration procedure to obtain the

structural loads on the blades.

Since in each of the steps in the analysis certain approximations and simpli-
fying assumptions must be made, a considerable inaccuracy in the final

result of bending and torsion moments can occur. It i, therefore of great
value to obtain an intermediate result for comparison, such as measured air-

load distributioans.

In the flight tests described in Volumes I and II, measursments of air pres-
sures and blade stresses are used to determine airload distribution and

blade response, whiie the blade control angles and flight attitude are also
measured. This makes it possible to separate the three parts of the analysis
from each other and to compare the results of each separable analysis with

test data.

In the theoretical work, extensive use was made of the Cornell Aercnautical
Laboratory's computer program for rotor blade loads analysis; in addition,

two Lockheed computer programs were used.
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ANALYTICAL METHCDS

In this section a brief description is given of the theoretical methods
uged in the analysis of rotor loads.

LOCKHEED COMPUTER PROGRAMS

In the following discussion the two Lockheed rotor loads analysis programs
used in the theoretical work are referred toc as Program I and Program II.
Similarity between the two programs makes it possible to give a parallel de-
scription of both.

Program I performs the computation of rotor blade responses from a given
airload distribution. This airload distributicn consists in general of the
harmonics of 1ift, drag, and aerodynamic pitching moments, vhich are given
as lumped loads at up to 20 blade stations. Program 11 performs similar
computations but allows the use of a larger number of blade stations. 1In
addition, Program II includes the computation of serodynamic 1ift and drag
at these blade stations. (A fiow chart of Program II is given in Figure 1.)

In the airloads computations, the following assumptions are made:

e The induced velocity distribution can be obtained from a descrip-
tion of the wake. The wake is approximated by a number of Helmholtz
ring vortexes representing the trailing tip vortexes of the rotor
blades. The vertical displacements and the diameters of the ring
vortexes are specified. (The vertical velocity of propagation of

the vortex rings and the contraction depend upon wake-on-wake effects.

A major contribution to the vertical velocity is the self-induced
velocity of the vortex ring which is a function of vortex strength
and core-radius to ring-radius ratio (Reference 2). For hovering
conditions, an estimate of the ring spacing may be obtained from
Reference 2. At low forward speed these estimates are assumed still
to be valid. At higher forward speeds the rotor is essentially
unloaded and the selection of ring vortex spacing is of lesser
importance.)

e The strength of the ring vortexes is obtained from the total rotor
thrust and is taken as constant around the azimuth. The shed vortic-
ity i5 neglected.

¢ The induced velocity due to wake vorticity is approximated by using a

number of simple algebraic expressions. This eliminates the very time-

consuming evaluation of the elliptic integrals in the expressions for
the exact velocities resulting from the Helmholtz ring vortex model.

e Optionally, the induced velocity can be taken as uniform over the
rotor disc. In this case, it is obtained from momentum theory.

T,
T
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? e The lift, drag, and pitching moment coefficients are expressed as

E functions of the local angle of attack and Mach number, as well as

L - of the profile thickness. These expressions are given in tabular

3 form. The local values of the coefficients are found by interpola-
tion.

o Initially, the rigid blade geometry is used. The effects of blade
element velocities perallel and perpendicular to the shaft, due to
structural deformations, and of changes in local coning angle and
blade twist due to 2lasticity are introduced in the next cycle, where,

3 after the blade responses are computed, the airloads are reevaluated.

g The linear aeroelastic effects are, however, already introduced in

closed form in the first cycle {i.e., without iteration) as shown

below. (The term .inear is used here to indicate that the aero-
elastic effects acting upon each harmoni: are produced by vibrations
in the same harmonic, while the interaction between one harmonic and
another is ignored at this point.)

The simplified theory for induced flow due to ring vortexes is obtained as
follows.

The potential flow induced by a ring vortex of infinitesimal core thickness
can bz solved by an iterative procedure. The three-dimensional problem is
first converted to a two-dimensional problem by viing the apparent symmetry
of the ring vortex model. Then, using a number of grid points in the plane of
symmetry, the Laplace equation, expressing zero divergence, is solved at each
of these grid points in succession {except for the grid points in the plane
of the ring vortex, where the potential is constant).

The flow pattern resulting from these computations can be visualized as a
system of equipotential lines and streanlines which intersect each other at
right angles. This flow pattern is unique, i.e., it is independent of the
vortex strength or the dimension of the ring vortex.

In order to arrive at a set of simple expressions for the computation of

the induced flow components at an arbitrary point in the flow field, the
flow pattern is modified oy approximating the equipotential lines as well

as the streamlines by circles, still intersecting each other at right angles.
The equipotential lines are centered on the centerline of the ring; the
streamlines are centered in the plane of the ring.

T et

From the geametry of this simplified flow pattern, the induced velocities are
easily obtained in terms of an arbitrary constant. This arbitrary constant
is, of course, a linear function of the vortex strength. One more modifica-
tion is peeded. It appears that if the arbitrary constant is adjusted to
give the correct value of the flow velocity in the vicinity of the vortex
filament, the flow velocity at the center is underestimatel oy a factor ¥ /2.
The constan: is therefore made a function of the radial distance at vhich the
streamline passes through the plane of the vortex ring. This function is
selected in such a manner that the exact flow veiocities, both at the center
and in the vicinity of the filament, are obtained.
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One of the important features of the Lockheed airloads program is the
possibility of trimming the rotor to a given set of integrated airloads
acting on the shaft. Up to three forces and three moments can be selected to
which the rotor can be trimmed. These are: forward force, side force, rotor
thrust, roll moment, pitch moment, and torque. The trimmed conditions are
obtained by adjusting the same number of the following angles: collective
pitch, cyclic pitch (two components), shaft angle, flight path, and yaw

angle. Theuretically any combination of loads to be trimmed to and angles

to de computed can be made, with the obvious restriction that their respec-
tive numbers must be the same. The practical limitations of the methed

are the same as those of the physical rotor system, e.g., in hover, changes
in the shaft angle will not effect any changes in the total lcads. It

should also be ncted that if it is attempted to trim the rc*or to a load

or set of loads beyond its physical capability, the solution of the computer
program will not converge, and the computations will be terminated.

The method by which the trimmed conditions are obtained is briefly described
as follows.

In addition to the computation of the airloads on the blade elements using
the given starting values of the angles, the airloads are also evaluated
after making a small unit change in each of these angles in succession.
The total rotor loads (3 moments and 3 forces) are then computed,and those
found for the starting values are subtracted from each of the others. This
results in a 6 x 6 matrix of changes in total rotor loads due to changes
in angles. From this matrix the columns pertaining to loads to which

the sysiem is not to be trimmed are removed. Also the rows pertain-

ing to angles which are not used for trimming (but are given as "fixed"
quantities) are removed. The resulting square matrix is inverted and
transposed, resulting in the "trim matrix".

Tne rotor louds computed with the starting values of the angles are sub-
tracted from the rotor loads, specified in the input, to which the rotor
must be trimmed. This results in a column matrix of six imbalances. The
imbalances in loads to which no trim is required are removed.

Finally, the column of imbalances is premultiplied by the trim matrix,and

the resulting cclumn is scalar multiplied by the unit of change of the angles,
resulting in the ™inges in angles required for trim. These changes are

based on linear interpolation or extrapolation. The process is therefore
repeated until convergence.

After convergence, the final airloads on the biade are computed. These do
nc . yet include any aeroelastic effects. The linear aeroelastic effects
ate found by repeating the airloads computations after making successive
unit changes in vertical (axial) air velocity, tariential eir velocity,
coilective pitch angle, collective pitch angular velocity, and uniform
coning angle. The difference between these airloads and the normal air-
loads is averaged over the azlauth, resulting in the "hovering" (linear)
aeroelastic effects for each blade station. This information is sub-
sequently used in the response calcuiations.
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From this point on, the two Lockheed programs are similar, and the follow-
ing description applies to both. However, some major differences exist
and will be indicated where they occur.

Before entering the response part of the program, certain inertia forces
are added to the lumped airloads on the blade elements. These are the
effects of vertical acceleration, pitch and roll rate, pitch and roll
acceleration, and rate of chaage of rotor rpm. In Program II the linear
accelerations in fore-aft and side direction are also included. The total
lumped loads are referred to as external loads in the following discussion.

The response to the steady- state part of the external loads is found by

an iteration process. First, the bendirg moments about two axes and the
torsion moments are ccuputed, using rigid blade geometry. For the angular
position of the structural principal exes of irertia of the blade section,
the combination of collective pitch angle and built-in twist is used (the
cyclic control angle is ignored &t this point; however, the effect of cyclic
angle is linearized and used later as it affects the first harmonic
excitation). The deformed shape of the rotor blade is then computed based
on the computed moments. The changes in deformation result in changes in
centrifugal forces as well as in a new geometry. By using the new geometry
and centrifugal ‘.rces, a new set of bending and torsion moments is computed.
This process is repeated until convergence.

Normally the abcove process would not converge at all, but rather diverge
very rapidly. Ccuvergence is obtained by arbitrarily reducing the amount
of change of the .oments (in particular the normal bending moment) to a
fraction of the computed chang= Since at convergence the changes in
moments are zero, this reducti.. does not alter the final results.

The response to oscillatcry airloads (and gyroscopic forces in conditions
with pitch and/or roll velocities) is obtained from the Lagrange equation:

a [ar)_ar  av_
at (aq)‘ 3g T3q - ¢ (1)

vhere T is the kinetic energy, V is the potential energy and Q is the
generalized force in the generalized coordinate, q. Acceleration forces
are obtained from the first term, centrifugal forces are obtained from the
gecond term, and Coriolis forces are obtained from both the first and the
second term, while the third term gives rise to structural forces.

The generalized coordinates, q, used in the analysis are primitive bending
and torsion modes which are of approximately the same shape as the natural
modes of a nonrotating uniform beam. One advantage of the use of primitive
mode shapes ingtead of natural modcs is that the natural mode shapes are

in general complex, i.e., vertical and horizontal displacements are not in
phase, due to coupling by Coriolis forces between these displacements.
Furthermore, experience shows that differences in the equilibrium wosition of
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the blade under steady load can result in significant shifts of natural
frequencies. This would make it necessary to compute new natural frequencies
and mode shapes for each condition, which can be avoided by working with
primitive modes only (which are not necessarily orthogonal) and accounting
for all the coupling terms.

. The Lagrange equations are expanded into matrix form by first writing the
displacements in terms of generalized coordinates:
Ix, 3y. 3z,
_1 - “1 - - ———1'- 3
"1‘23% 9 3 yi’Zaqn % 0% Zaqn 1, s
n n n
aei
o =2 3y, (2)
n

then by writing the kinetic and potential energy in the rotor system in terms
of displacements, velocities, and curvatures, and finally by taking second
derivatives with respect to a, and q, as follows:

() () = (&) 8

to find the (n, m) elements of the matrices A, B, C, and D in the equation,

(-w2[A) + 1w@ (D} - 9° [B] + (c]) {q} = {(Q, (%)

where {Q} is the column of generalized forces.

Feedback of rotor response into aerodynamics is accomplished as follows.

As part of the airloads computations, the change in airload due to a change

in relative velocities and angle of attack is included at each radial and
azimuth position. These changes in airload are harmonically analyzed. The
~eroth harmonic part is used to define the linear aerodynamic damping and
stiffness terms in the above matrix equation, and these terms are added to
matrices D and C. The harmonics of the airlcads due to blade response

cannot be used in a closed-form solution. Therefore the complete aerodynamic
load distribution is recomputed using the blade response found in the previous
cycle.

The computation of the total tending moments, shear loads, and torsion
moments at each azimuth position is performed as follows:

From the harmonics of displacements in the primitive modes, the harmenics
of displacements in x, y, and z directions and the rotation @ are computed;
for example,

z (X) =
2 9,p 2lx) s (>)
vhere i is the primitive mode number and p is the number of the harmonic.
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The accelerations x, y, z, and 6 are found from x, ¥y, z, and 8 by multiplying
by -(p-1)2 2 2. Note that p=l indicates the steady state, p=2 indicates the
first harmonic, etc.

Inertia forces are computed on each blade element from the accelerations.
Similarly the velocities x and y and the resulting Coriolis forces are
computed. The inertia and Coriolis forces are added to the external loads,
resulting in total forces on the blade elements.

The total moments are computed at ecach azimuth position from the total
forces on the blade elements and the instantaneous blade geometry. Both
the forces and the geometry at the selected azimuth positions are obtained
from harmonic synthesis.

The output of the computer program consists of a listing of the two bending
moments, torsion, two shears, axial load, and the y, z, and 6 coordinates
at each selected station and azimuth position. In addition the same duta
are given in harmonics at each blade station.

Optionally the same program can be used to compute natural frequencies and
mode shapes. This consists of the solutior of the eigenvalue problem:

(-2[A) + 1a@[D} -2°[B] + [C}) {a} = {0} (6)

If the linear aeroelastic effects are included in the D and C matrices,

the eigenvalues w consist of real and imaginary parts. The modulus of w
is the natural frequency; the ratio between the imaginary part and the real
part represents the damping ratio.

If the linear seroelastic effects are not included, the eigenvalues are
found to be real.

The natural mode shapes cunsist of x, y, and z displacements and rotation 8.
If the blade is rotating, the y ard z displacements are coupled through
coriolis forces and are therefore, in general, out of phase. It can be

shown that each blade element describes an elliptical path, as illustrated

in Figure 2.

CORNELL COMPUTER FROGRAM

Tnis progrem is described in detail in Reference 3. In comparison with the
Lockhesd method, the following differences are of interest:

In the Cornell program the geometric blade angles are treated as known
quentities, including the rotor angle of attack. It is therefore not
possible to compute the collective and cyelic control angles and the rotor
shaft angle required for a given trimmed condition in a single computer
san., (A trimmed condition mey b: defined by given rotor thrust, shaft
moments, and rotor torque.)




Naturai Modes of Vibration

Figure 2.
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The description of the wake of the rotor blades is more elaborate in the

Cornell program. The shed vorticity as well as the trailing vorticity is

included in the analysis. At short distances behind esch blade, the trail-
/

ing vorticity is represented by a number of distinct {lumped) trailing
vortexes rather than a single trailing tip vortex.

The wake geometry is specified by input values of the wake transport
velocity, which can be selected differently at each station and azimuth
position, but is constant with time. (The azimuthal differences in
wake transport velocities are restricted by the :.ethod in which this
input is defined to five harmonics only.} As a result, the wake spirals
in this program do not contract and are located at equal distances from

each other.

Only "flapping” degrees of freadom are considered in the Cornell programs.
Torsional deformations of the blade are specified up to and including the

fifth harmonic only.

A constant 1lift curve slope is used, which is cut off at stall. The effect
of the Mach number is not included. Drag and aerodynamic pitching moments

are not computed.

The structural responses computed in the Cornell program are limited to
flapping bending moments. These are found as the summation »f the bending

moments in each of the natural modes.
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APPLICATION OF THEORY

fidw

COMPUTATION OF NATURAL FREQUENCIES ALD MOLE SHAPEZ

The natural frequencies and mode shupes of the instrumented blade are mea-
sured by a shake te-t. 1In addition, the theorstical mcde shapes and fre-
quencies are computed, using lr-ckheed Program I, for the cantilever-
noarotating blade. Ths comparison of the test and anslysis of these
frequencies and mode shapes is made in order to establish the vealidity

of the mathemstical model used to represent the rotor system. This compari-
son is shown in Figure 3.

In the above analysis the blade is subjected toc lg gravity forces as it is
in the shake tests. In order to find the frequencies and mode shapes
vhich will be used in the Cornell program, the computations are repeated
without the 1g gravity forces and with the normal rotor rpm. The coupled
bending mode shapes are shown in Figure 2.

AIRIOADS COMP'TTATICNS

A complete list of the flight conditions analyzed is contained in Table I.

Application of Lockheed Computer Program

The airloads computaticns performed with the Lockheed computer program are
to be considered separate airloads analyses, i.2., the airlcads are com-
puted without iteration from a given blade geametry including the struc-
tural responses of the blades. Sample analyses showed that torsicunal
blade responses are of major importance in the determination of airloads
on the blade (Reference 4) and must be included in the computations.

The torsiounal deformation used in tle analyses is basecd on the actual
measurements of the torsion moment on the blade {at a radial dictance from
the shaft of 115 inches) in combination with the effective torsional stiff-
ness of the blade inboard of that station. The resulting twist angles

are used as constants over the blade. For the purpose o¢f the separate
airloads analyses the computer program was modified in order to accept

the input of the torsion moment (at staticn 115) defined at 36 azimuth
positicns. Theoretically this provides for the use o. all the harmonics

of this torsion moment up to the seventeenth. However, it must be realized
that the distribution of the torsion moments over the blade span in the
higher harmonics will be guite different from that in the lower ones; hence
the higher harmenics of the torsional deformations cculd only be cbtained ]
correctly if different effective stiffnesses were used in connection with
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the higher harmonic torsion moments. Furthermore, in the higher harmenics
the angular displacements could be expected to be different at the dif-
ferent stations.

The harmonics of the torsion moments at station 115 wh.cn are used in the
separated airloads analysis are shown in Volume II. Ccuvarison of
the harmcnic components at station 115 and station 185 confirms the
above observations. The absence of any clear phase relationship between
the torsion moments at these stations indicates that more than one mode
participates in the torsion moment response. These uncertainties with
1 : regard to the finer details of the distribution of the torsicnal deforma-

: tions must be borne in mind in the review of the comparisons of the results
of the separated airloads analyses with the measured data.

No provisions were made to introduce a given normal or ir-plane bending

i response into the separated airioads analysis. That the effect of in-plane
i bending on the airloads can safely be neglected is obvious. The effect

i of the normal bending response is evaluated on a sample basis by two

f different methods:

e In addition to the predicted airloads, the Lockheed computer
program provides the change in lift, drag, and pitching moment
due to a unit incremental relative vertical velocity. 4n estimate
of the incremental relative vertical velccity due to blade bend-
ing response can be obtained from the response analyses.

¢ The Cornell compurter program does include the effect of flapping
bending on the airloads. Comparison of airloads computed
with this program using three flapping modes and a modification
where the displacements in the natural modes are zeroed ,it shows
that the effect of blade bending response upon the airloads is
relatively small.

Ia the Lockheed computer program the effect of not including the blade bend-
ing in the separated airlioads analysis is largely compensated for, as far as
the first harmonic is concerned, by making slight changes in the cyclic
control angles, as will be discussed presently.

Since the Lockheecd programs provide an option to trim the rotor to various -
selected forces and moments, it 1is interesting to look at the advantages of
using this option.,

Of the angles measured in the flight test, the collective and cyclic control
) angles are known with suffici=nt accuracy; the rotor ..gle of attack,
however, is not, for a number of reasons. Among these are the possible effect
of the wing and body on the free-stream velocity at the rotor disc and the
fact that bending disvlacements of the rotor blade elements are nsglected
(the first harmonic of these changes the tip path plane).

14

;
i
|
!
i
|
{




(AR, FE

N

PR

bt

Small variations in the cyclic control angle can comrensate for neglecting
the first harmonic of the vertical velocities of tne blade elements due
to blade bending.

ey 2

The total rotor thrust is found from integration of the airloads on the
rotor. The pitch and roll moments on the rotcr can also be obtained in
this way. It has been found, however, that *._.2se moments do not agree
very well with the moments derived from the first harmonic of normal bend-
ing at station 6 in combination with gyroscopic and inertia moments based
on measured roll and pitch rates and accelerations.

It may be assumed that the measurements of the normal bending noments at
station 6 are highly reliable. Furthermore, substantial errors in the
measurements of pitch and roll rates and pitch and roll accelerations are
not to be expected. Therefore, in view of the fact that a very small error
in the measured and integrated airload distribution can result in a sub~-
stantial error in computed shaft moments, the trimmed sclutions for the
airloads computations are based upon the measured first harmeonic of normal
bending at station 6, extrapolated to the shaft, multiplied by 2 to account
for fou- blades, and combined with the inertia and gyroscopic moments on the
rotor due to the measured pitch and roll rates and acceleraticns.

The situation resulting from this method o:' analysis is that, as far as
the steady-state and first harmonic airloads are conceruned, the analytical
results are believed to be quite accurate. The comparison of test

and theory must therefore be considered as a check on the performance of
the airloads measurements,

In sddition to the trimmed analyses described above, analyses were made in
vhich the rotor was not trimmed. In the untrimmed rotor analyses, the
measured control angles and angle of attack were used. Also, the effect
of the blade torsion was left out.

The Lockheed program provides for input of selected vertical displacements
and contraction of the vortex rings. In the untrimmed analyses an assumed
relationship between downward displacement and wake contraction is used,
based on experimental work (Reference 5). The downward displacement is

found from the uniform induced velocity based on momentum theory. This then
determines the contraction, i.e., the wake radius. To the downward displace-
ment is then added the vertical component of the free-stream velocity

based on the measured angle of attack.

In the trimmed analyses the verticai displacement 2 (positive down) and the
vertex radii £ were selected as follows:

Conditions zZ =5, 12, 20, 28, 36, Lk
1, 4,19 £ = 205, 200, 195, 190, 185, 180

Conditions Z =28, 25, Lo '
5, 8, 11 £ = 205, 20C, 195

15
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Condition 16 Z = =10, -20, -30
' £ = 205, 200, 195
1 : Conditions )
: 21, 23, 25, 26, 27, 31, 33, Z = 4, 10, 20
36, 37, 39, 40, Wb, 50 £ = 205, 200, 195

Application of Cornell Program

In the analyses made using the Cornell A.L. computer program for rotor loads,
the following selections were made regarding the wake description, the
torsional response, and the blade dynamic properties and geometry:

A very important element in the computation of rotor loads using wake vortiecity
is the placement of the wake elements with respect to the rotor. In the
Cornell program, the location of the wake elements is obtained from selected
inputs describing the downward velocity of the wake elements. In all com
putations made with the Cornell program, this velocity was taken as the uni-
form inflow velocity obtained from momentum theory combined with the component
of the free-stream velocity perpendicular to the plane of the rotor. The
latter is found using the measured angle of attack. The wake is further
described as follows:

e Number of azimuth segments of the weke mesh

behind each blade (i.e., number of shed vortices) =2
: e Number of trailing vortexes in tie rolled-up
wake (tip vortex only) =1
e Number of wake revolutions = 3
® Wake advance (i.e., fraction of AY = 2% Ino. of
§ blades, by which the wake is advanced azimuthally) = 0.7

Dis<ance rolled-up tip vortex is moved
inboard from the blade tip = 30 inches
(Note: The radius of the tip vortex is then 180 inches)

The torsional response is specified in the input. The Cornell program per-
mits a separate (different) input for the harmonics of the geometric blade
angle at each blade station. The responses used in the Cornell program were
obtained from Lockheed Program II and were computed from the measured airloads.
: Since provisions are made for the input of the first five harmonics only, the
higher harmonics of the torsional response are not included.

bt ot oturt ¥

The cone angle of the XH-51A rotor blade is not constant but varies between
3.2 degrees on the inboard blade and 2.2 degrees on the outboard blade. In
the Cornell program a single ccne angle must be selected. This cone angle
was taken as the average, 2.7 degrees.

16
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Since the rotor angle of attack is not found in the test date with sufficient
reliabiiity, and since this angle cannot be found from an internal trim pro-
cedure, the trimmed angle of attack computed with Lockheed Program II is used.

The natural frequencies and mode shapes computed with Lockheed Program 1 are
used.

RESPONSE ANALYSES

Three different methods are used to compute the blade responses to the
given measured airloads. It may be noted that since the total airloads
are known, the damping forces and aeroelastic effects are included in the
excitation. Therefore the only damping used in the computations is
structural deamping, which is estimated at .02 [complete damping, i.e., the
stiffness matrix C is multiplied by (i = .02i}].

The response analyses are again considered as "separated analyses" since
no feedback to airloads of the response need be considersed.

The computations are performed with Lockheed Program I ac described in the
previous chapter. In these computations 7 harmonics are used and 18 azi-
muth positions (20° increments in azimuth). Thirteen primitive modes sre
used, consisting of five normal bending, five in-plane bending, and three
torsion modes.

The same computations are performed with a simplified program. The difference
between t'.is new method and the method above is that the responses in the
modes are computed for all harmonics including the steady state, thus ignoring
the nonlinearities in the steady-state respcnse. The normal bending moments
are now found from a summation of bending moments in each of the modes. 1In
these computations the same 13 primitive mode shapes are used as above.

Also as above, the equilibrium position of the blade is taken as the steady-
state deformed shape under the steady-state part of the load.

Since it is not practical tc modify the Cornell program in such a way that a
given airload distribution can be given as an input,the Cornell method for
the computation of normal bending moments is simulated by a variation of the
modified program. This consists of using only five primitive modes in normal
bending and of using the undeflected blade shape as equilibrium position.

The measured distributions of differential pressures do not provide any in-
formation with regard to the chord forces. The integrated pressures {over
the chord) give the normal force and aerodynamic moments only.

In view of the large chordwise bending moments measured, in particular at

the tlade root, it is apparent that the aercdynamic chord forces cannot be
neglected. Furthermore, coupling between in-plane and normal bending results
in an effect of ihe chordwise airloads on the normal bending as well as on the
in-plane bending.

7
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For the purpose of the present investigation, a modification was made to
Lockheed Progrem I by which the chordwise airloads are derived from the
normal forces as follows:

¢ The normal force coefficient is obtained from the measured normal
force and the computed relstive wind at each blade section.

o The chord force coefficient is found as a function of normal force
coefficient and Mach number. This relationship is shown in Figure L.

@ The chordwise airload on each blade element is then computed from
the relative wind velocity and the chord force coefficient.

The lumped normal forces and chord forces at each blade station and
azixuth position are resolved in the directicns parallel and perpendicular
to the shaf't axis. The angle of rotaticn used here is the instantaneous
angle found from the collective and cyclic control angles

0= 00 + elccos Y + els sin ¥

HARMONICS OF ROTOR LIFT

In the camputations of the responses to measured airloads, using Lockheed
Program I, the harmmonics of normal shear force at each blade station are
computed. It is assumed here that the responses of the noninstrumented blades
are the same as those of the instrumented blade. From this it follows that
the total ertical shear transmitted to the shaft contains only the fourth,
eighth, twelfth, etc., harmonics, since these are the only harmonics to which
the blades respond in phase with each other.

Of the sever harmonics used in the response analysis, only cthe fourth is
therefore considered. In Table II the cosine and sine components and the
amplitude of the fourth harmonic of rotor lift are given. These forces con-
sist of the summation of the fourth harmonics of airloads and inertia forces
on the blade elemen*e, multiplied by four to account for the four blades.

The cosine component is the instantaneocus force acting at the time when the
blades are at 0°, 90°, 180° and 270° azimuth positions; the sine component is
the instantaneous force acting at the time when the blades are at 22.5°, 112.5°
202.5° and 292.5° azimuth positions.

18
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TABLE II. FOURTH HARMONIC COMPONENTS OF ROTOR LIFT,
INCLUDING ROTOR INERTIA FORCES
w
R 2 3 § 2 g g
1 [ v 3 ot v [ L
N §- § 2 3 g e 5 3
o ot o 2 —~ o ot O @ W a,
] 0 g < g a, < w g g B £
S 383 » S 8 3 838 %3 <
1 26 -120 -16 120
2 -64 -128 144 27 -332 -536 632
3 64 b 6h 28 - 60 - 28 68
% 0 60 60 29 -168 -200 260
5 -32 -~108 112 30 -316 -368 488
(3 -8 - 96 96 31 =400 740 8o
T 8 -152 152
8 224 - 52 228 33 ~24 - 56 6k
9 -108 -324 34) 3k ~56 =104 116
10 64 -264 272 35 -200 -400 LL8
11 -12 -288 288 36 -112 -128 168
12 28 -296 300 37 - 88 ~-124 152
13 48 -272 276 38 - 84 =120 148
1k 1ko -2ho 260 39 - 56 - 8 60
15 172 -292 340 L0 -12 -9 96
16 =12 76 16 41 - 84 - 8L 120
17 -80 -10% 132 42 -100 -10k 1Lk
18 -76 - 68 104 43 - bk =120 128
19 -12 - 84 84 uy =172 - 16 188
20 96 - 4 104 Ls - L8 - 96 108
21 -12 - 60 60 L6 - 36 - 6k 76
22 hi2 ~524 668 L7 -12h - 32 128
23 -32 12 32 L8 - 48 -104 112
2k -60 - 96 116 49 - 68 - 56 88
25 -64 - 32 T2 50 - 76 - 24 8o
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COMPARISON QF THEORETICAL RESULTS WITH TEST DATA

Comparicson of measured and computed responses (Figures 5 through 102) shows
that on the outboard part of the rlade the harmonics of the bending moments
can be obtaired with reasonable sccuracy. Notable differences between test
and theory exist, however, in tle following areas:

® At the inboard stations the normil bending moments computed with
Lockheed Program I show in many conditions a substantial difference
in first harmonic content. This difference may be attributed to
inaccuracy of the airloads measurements.

e . some conditions the steady-state part of the normel bending
moments shows a conslderable difference between test and theory.

e In severaul conditions the agreement between measured and computed
in-plane bending moments is very poor. This iadicates thet the
relationship between normal force and chord force coefficients,
used to compute the drag loads (Figure U), may be deficient in
certuin areas. This is in particular the case for the larger
angles of attack; as shown in Figure 6, condition L, which is a
hoverirg pullup, the drag loads appear to be overestimated.

e The agreement between measured and corputed torsion moments is
rather poor, particularly at the lower flight speeds. The computed
torsion moments show a large fourth harmonic response. This is to
be expected, based on measured as well as computed torsion frequencies.
It appears that the mechanism by which the torsion moments are

roduced is not fully known at this time. Improvements in the

analytical methods should include the degrees of freedom of the
control system and a2 more refined definition of the blade elastic
axis and local cg.

e Compzrison of results from Lockheed Program I and the modified
Program 1 shows the improvement which is obtained by computing the
bending moments from the summation of airloads and inertia forces,
rather than from the summation of wmodal recponses.

Compariscn of measured and computed airloads shows that in mcst cases the basic
shape of the sirload distribution can be pradicted (Figures 103 through 176).

For the 20 conditions for which a full data analysis is available, the
trimmed rotor loads are computed using Lockheed Program II. The shaft ;
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moments in these conditions are cbtained from evtrapolation of the first
harmonic of normal bending at station 6, and include the gyroscopic and

inertia moments on the rotor computed from the measured pitch and roll rates

and accelerations. The rotor 1lift to which the rotor is trimmed is taken as

the integrated airload. The angles used in the trimming procedure are the .
cyclic control angles and the rotor angle of atiack, except in conditions 1,

L, ané 19, which are essentially hovering conditions.

PO

The rotor angle of attack fourd in the trimming procedure with Lockheed
Program II is used in the same 20 conditions in the Cornell program (Figures
123 through 142). The other analyses with the Cornell program are performed
usi?g the angle of attack as measured in the flight tests (Figures 143 thro.ugs-
171).

In addition, the conditions for which a full analysis is made are analyzed
untrimmed, using Lockheel computer Program II (Figures 105 through 122).

Comparison of the trimma2d and untrimmed conditions shows the usefulness of the
trim procedire. This nlso indicates that the measured angle of attack cannot
be used for the computation of the rotor airloads. In some conditions this is
quite obvious. In coadition 16 for instance (Figure 108), which is an auto-
rotation, the flight path angle is definitely nonzero and should be included
in the analysis. The trimmed solution for this condition resulted in a rotor
angle of attack of i4.5° relative to the free-stream velocity. It is also
interesting to note that the computed rotor torque in the trimmed condition
turned out tc be a small negative value, as is to be expected in autorotation.

In condition 19 (transition to forward flight), an unsucessful attempt was
made to obtain a convergingsolution by trimming to the measured rotor thrust
using a variation of the rotor angle of attack at a forward speed of 20 knots.
The exact corndition is not known, mainly because the forward speed was not
specifiea. A converging soluivion was obtained by using the collective control
angle for trix. The rotor angle of attack was estinated as -~20°, and the
forward 3peed was estimated as L0 knots. The airloads are shown in Figure 109.
The trim:ed collective control angle was found to be 11.13° as compared to the
measured angle of 11.09°.

A good agreement was obtained using Lockheed Program II for the hovering
condition, as shown in Figure 103. Figure 104 shows the effect of introducing
a small forward velocity upon the airloads. This forward velocity was taken

as 10 kncts, which aprears to be toc high since it results in computed loads
in the forward quadrants at the outboard stations which are too high. However,
at the in-board stations a reasonable agreement with the test wa< obtained.

Encouraging results were obtained with the Lockheed Program II in trimmed
analyses for the lower velocities {conditions 5, 8; see Figures 105 and 106},
The fact that these analyses showed better agreement with the tests than
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those with ine Corne.. program is attributed to an improvemerti in the
description of the wake geometry (see Applicaticn of Theory, Airloads
Computations, for tne values of vertical displacements and radii of the ring
vortexes).

All flight conditions of Table I were analyzed with the Cornell A.L. program
of Reference 1.

Comparison of the tests and Cornell theory shuws that at least at the outboard
blade stations a good agreement is obtained in the shape of the airioad curves
at moderately high forward speeds (see Figures 131, 137, 138, and 141).

However, at the low speeds this agreement is very poor, as showr in Figures 125
and 127. It is likely that the computed deformation of the wale (as determined
by the vertical wake transport velocity) should not be based on the uniform
inflow velocity computed from momentum theory at the lower speeds. Perticu~
larly in hovering conditions (conditions 1 through 4), the computed steady-state
part of the loads at the intoard s:ations is not in agreement withk the t{est
measurements.

In the course of the analytical work it became increasingly difficult to obtain
corvergence of the Cornell program at the higher forward speeds. lo con-
vergence was obtained in conditioms 27, 29, 30, and 31.

Finally, for conditions 5, 8, 25, 31, and 37, the airloads were computed in
trimmed flight, without an extermal input of torsional responses. In these
analyses the responses were computed from the computed airloads and ted back
ingo the airloads computations. The results are shown in Figures 172 through
176,
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CONCLUSIONS

I ARSI ATETERRT I A

.1. In most of the corditions ar.alyzed, the computed bending moments were
found to be in good agreement witk the measurzd moments. The agreement
between computed and measured torsion moments, however, was poor, indicating

3 that improvements are required in the mathematical model as far as ihe

torsional properties are concerned. (These may include the introduction of

the control system degrees of freedoz in the model.)

‘ 2. Comparison of measurements with airloads obtained with the Cornell program
shows good agreement of the variatisas of the airloads over the azimuth.

]
§ ‘3. At the lovwer forward speeds the rotor wake can be represented by a se* of
§ ring vortexes.

]

4. An urgent need exists for a method for predicting wake deformatior and for
programming this method.

‘S. Torsional responses are important in the computation of airloads.

6. A rotor trinm procedure included in a rotor loads program has been shown
to be useful in the prediction of rotor loads.

. Based on the results obta.ned for chordwise bending moments, the
relaticnship between normal force coefficient and chord force coefficient used
in Lockheed Program I should be reexamined, particularly in high angle-of-
attack areas. Such investigs‘ion may result in improved estimates of drag
coefficients.

Filtmew

YRIML SRR e OIS ¢y

SASRCET AN




1.

B B s it st W watrrs s

REFERENCES

: RANDTL, L., and TIETJENS, O. G., Fundamentals of Hydro and
Aercmechanics, Dover Publications, Inc., New York, 1957

BRADY, W. G., and CRIMI, P., Representation of Propeller Wakes by
Systems of Finite Core Vortices, CAR Report 88-1665-S-2, February 1965

PIZIALI, R. A., A Method for Predicting the Aerodynamic Loads arz
Dynamic Response of Rotor Blades, Cornell Aeronauticai Laboratory, Inc.,
USAAVLABS TR ©5-T4, U. S. Army Aviation Materiel Laborstories, Fert
LZustis, Virginia, January 1966

SISSINGH, G. J., and SWEERS, o. E., "Lifting Rotors Cperating at Eigi
Speeds or Advance Ratios", Fluid Dynamics of Fotor and Fan Supported
Aircraft at Subsonic Speeds, AGAPD Conference Proceedings No. 22,

September 1967

STMMONS, I. A., FACIFICO, R. E., ani JONES, J. P., "The Moverment,
Structure, and Breakdcwr of Trailing Vortices from a Rotor Blade",
CAL/USAAVLABS Symposium Proceedings, Vol. 1, 22-2h June 1966

P . v gy S ————— P -

Liet




‘ } . -8
lun
) B ) T .5 9 _
g g & g "§ 3 !
=
J -
o 3
r 1 ] 1 -® .m
. m e aa ° 2 § g °*- E§RK°% wE
m 01X G1-"N1 - INIWOW ONION3S INVId-NI §+'NI - INIWOW NOISHOL 3z
L -]
ell\
i i
3 2 :
m.\. m.w .
m__ o 4,
o9 |
- -R v 8 .
mc
[o]
..m_ m.
R »
- B ] & 5 2 :
? £ 5 g C m‘ i
I § *
- m ¢
(Y . .
i
-. - -~ [ ] ™~ o L] 4-’.‘“ 9.-” h LK - 9.-!.

& X §1-'NI - ININOW ONION3S TYWHON

e v % e e s J . A S ————————— . M

- s o e man dd e e A ot

Ssiasniii i Lk i PRy > v , P




¥ Tiafts .
W T . B N

2 R
lmm
DY O
g -um d
23
™M
e dy
o 8
RGN G |
- %ﬂtﬂ mu :
02 X §1-°N} - INIWOW INIONI8 NVId-NI §1-°N) - INSWOW NO(S¥OL .M ..m.
I
iz R
- > ]
o b
QO
1 7 -R un
g8
-an m.u
“g
2 8 2 % & " a4 .0
g 5 & 8 5 8 rf o4
vd
P58 ,ﬁ
.l' m
[<H)
ﬁ r r T -4 IIJL -®

non X €1 NI - INIWOW ONIGN28 TYWION




. » . . “ P e -
A R aas rar vatcmingn v FEAN N .

SIS
‘v/‘
SIS
o~
w~
STA I5?
STA 1B
STA I
\.'\'
3
»
AZWRTH ANGLE - DEGREES
a TAS)

Pl 81-'N) - INIWOW ONION38 3NVId-NI 91-'Ni = INIWOW NOISUOL

28

5
-
%0"
-
]
H
Measu-ed Airloads {13 Modes),
it 51

L)

eoemmun THIDEY
= SIALIFIED THEORY

oy e e

Response to

Condition 5 (Forward Flight :

SAD
SMIB
STA 48
(4
ST
WJ
STA 12
STA W
)
»
AZIMUTH ANGLE - BEGREES

Figure T.

r — .Vl

- ~ L J L L] L J ne - o~ o L L] - -

QX @7-°Nl -~ INIWOW ONIONIE TYWYON




Ll ]

SR 1B
/)
SM 7

A & ° am - a §
¢01 X 81-'NI - INIWOW ONION3g INVId-NI 81Nl - INIWOW NN(S¥0)

Response to Measured Airloads (13 Modes),

Condition 8 (Forward Flight at 105 Knots TAS)
29

Figure 8.

~ - ~ ~ L 3 42 -

oL ¥ 87- "Nl - INIWOW ONIQON38 TYWHON




A

wooe BT
osmsne THEORY

e SIMRLIFIED THIORY

\
\)

- 4

» 4

o

?

\
b "
0

ot X 81-"NI = INIWOW SIIONIE INVId-N|

€Nl -

INIWOW NOISYHOL

SN
)
STA

v v v v
-~ - L4 - ~ L J P~ o L 4ol -

X 91-'NI - INIWOW ONION3S TYWUON

Response to Measured Airloads (13 dodes),

Condition 11 (Left Turn At BL Knots TAS)

Figure 9.




—— T haiin aaininbiat st S e e -

NORMAL BEWDING MOMENT - IN.-L8 x 10°

» ]
wooe FST
e THEORY
[ SIMPLIFIED THEORY
L)
-n
» S ¢

IN-PLANE BENDING MOMENT - IN,-LB x 10

7]
L~

Figure 10. Response to Measured Airloads (13 Modes),
Condition 12 (Right Turn at 82 Kno%s TAS)

31

L T T L




e & o 1]

E2e

NORMAL BENDING MOMENT - IN.-(8 x 10°

IN-PLANE BENDING MOMENT - N, -LB x l()3

0 -
h mnﬁ -l e N
.;. etV onme $ . -
4 : STA 1B E
0 | ST é o4
.’_M- : :
7 -- s
. m I - — T
P e e —— g - I
g -~ and
' ' ' [ ' 1 1 [ 1 )
’ » » ™ » 3 ™ » m »

AZHAUTH ANGLE - DECREES

Figure 11.

AZWAUTH ANGLE - DIGAEES

Response to Measured Airloads (13 Modes),
Condition 16 (Autorotation)

32




| S
N 7
N
WA NS
STA 5

- i q—‘w T
[ ] e ’a hd 2 ' ] ° ﬂﬂﬁﬂa

81-°N} ~ INIWOW NOIS¥0L

1
ﬁ\ 4
8
g g
f r

nS X 8- 'Nj - INIWOW ONIGN38 TYWHON

STA 1S
STA 25

e o in S LA S ket S s s B0 e e <ML Ve it e bt v B mgtbt ey Ok TN SR A Ve

- PR S D LA AN R

I

—~

(13

Q

o

]

=

™

—

~

0

ke

< -~

O o

~ O

$o ol

et 4

< ot
0

k-2~

[ VI ]

w o)
€

“- o

~

N

28 0"

o g

+$ 0
()

[V

) ot

S d

o g

2 Q

n O

U

fs =

.

N

p

m

ot

£ %




CAL 32l i i 2

o

R T

eosee ST
]

NORMAL BENDING MOMENT - IN, -8 x 10°
|
&

.f ] g ‘~‘.
M
==

TEORY
SIMRLIFITD THEORY

IN-PLANE RENDING MOMENT - IN.-LB x 10°

» - SYA IS

St i

2

2

£ o

§ R

s : : STA 185

é;_‘::] VY VP

-
! ! t | i
. " ) m wm
AZINUTHANGLE - DEGREES

Figume 13. Response to Measured Airloads (13 Modes),

Condition 21

(Frere at 60 Knots TAS)

34




-

NOKMAL BENDIXG MOMENT - IN,-18 x 10°

- waeEST
T THEORY 0
l — SIMALIFIED NEOmY

"3

L)
A

STAS

W N

IN-PLANE BENDING MOMENT - IN,~L% x

TORSION MOAL~: - IN,-LB
8

L_'r"\..-sy;n —

' 1h -

’ K/;:»,

‘” -y

- |
] { t 1 ]
] © w m »

AZMAUTH AMGLE - DIGARES AZUAUTH ANGLE - DEGRELS

Figure 1k. Response to Measured Airloads (13 Mcdes),
Condition 23 {Level Flight at 109 Knots TAS)

35

[ PP P RPN S




AP das

(Alaf ntadior s o gt i Al i e
e r seresr aa

L

NORMAL BENDING MOMENT = IN.-L8 x 10°

SR 7 N, S

IN-PLANE BENDING MOMENT = 1, <L® v 10°

~ds
Se
TORSION MOMENT = IN,-LB
E.013

SIA 5
[
-2
[ [ 1 . s ' [ 0 '
» » » » [} » » .

Figure 15. Response to Measured Airloads (13 Modes),
Condition 25 (Level Flight at 163.5 Knots TAS)

36

St ihg

T4 N . AR 808 12 5




&A?&fé-&%‘?.zuﬁwg: e A

)
0
m)
2
~ 0
0w &
tE
v Lo ¥ ¥ M dm
2 ¢ ®R & & © & s A =R ° Am * s - = WM §g " KRR} &2
nou X @71- NI = INIWOW ONIONId INVId-NI 1= NI - INIWOW NOISHOL \w 8
Py i
m ”MS ~ !
m ¢ M w
x b .
Bms mﬂ“ ;
1] : §
-2 8%
88 i
& q
lmw -m
O
=
M -nm v 8
mc
j g
-y s

*~ [ 4 ~

O ¥ 91-'NI -~ ININOW ONIONIE TVWUON

~
* ~ h - ~~ - N




—v : _ |

n oo m ' )
8 & B

m ‘.
i
a.oa....nancaamv...rua ...m
«

ns X @1=-"NI - INIWOW ONIONI& INVId-NI 81Nl - ININOW NOISNOL .m .
@
2
3
[
4
8
[+ ]

Condition 27 (Level Flight at 227 Knots TAS)
38

"
AT
Figure 17.

-
* » b ~ L J L ] T~ [ LA - L L] - []
aa—u-.?.z..goz.oﬁ.g
)
.
| anl.-
s . - ; 3 b ik
L g s bk Aot i ik i b s = 2 i .




T

9 R
01 x £1-°Nt - INIWOW ONIONIE NVId-NI

o 1= NI - INIVOW ONIGN3S TVWUON

»
Response to i{easured Airloads {13 Modes),

Condition 31 {Level Flight at 232 Knots TAS)

Figure 18.

39




fut et e e S ot e 28I e 5 - monhnt 5 ¢ s« et

VM LU e T ek v MR oraBAR Y sl (A R % ) o R i W R4 oS

i > W |
: n & ) n Y :
“ 8 8 5 5 ¥
nl s
T e f ) ] - )
R @ & » A © ¢ R R 8 ° 8 © am °* 3 3 ¢ * KR8

o x 1=°NI = INIWOW ONION3@ INVId-N| 97-°NI - INIWOV/ NOISHOL

o l’

.
f lw“ i L
. !
QB -0 § S
;

_ » «-:

-9 A

s

-e “:,,:.

o - ooy

[ ] ) [ ] (] ) -

Response to Measured Airloads (13 Modes),

san
SR

SR8
SK 18

Condition 33 (Level Flight at 157 Knots TAS)
40

Figure 19.

o @1-"NI - INIWOW ONIGNIE TVWUON :

W B W g

Poge

1 T Ao . .

T IR N PRI IR SR ) RN W ROR I W WY YRR TOON G T OReTI st Sak e Al 4L Abisas




NORMAL BENDING MOMENT - IN.-LB x 10°

oeee EST

e THEORY
— SIRLINED NEDRY
. ']
» STA ¢
7o
» /
»
-

-
»
3
2
»
: “ ' s
san & v, §
.

o
=
-2 3
- -
-
\ saus g
a
2 F
2 Z

St

' > ? A
-}Q.va' mm : WA AR
~ : ' ALY

. _‘L"\\.','\\ '..a" o] g" j AV !

] e g > snoe

WASA -

P gl N g

P m om m P e m m owm
AZWUTHNGLE - BEGAEES AZISUTH ML - SIGAEES

Figure 20. Response to Measured Airloads (13 Modes),
Condition 36 (Pullup at 126 Knots TAS)

41

[P T RU SRR PRI 1 ¥

s

R

™

4




01 X @3-Ri - INIWOW ONIONI® INVId-NI

a an - m- w - &.0@

-Vl - INWOW M)ISHOL

Airloads (13 Modes),

Condition 37 (Pullup at 124 Knots TAS)

] H
{ I
2
- [ ]
- ' m
:
. -8 m (.
- . g 2 2 8 & n . i
i g 5 8 1 8 g 8 L B
X 4
’l \\ >
ﬂ LY d ¢ H
] 2 — )
L ﬁ i R e ~ L ~ ® o~ L4 [ ] L] o L L L) L] "o L] o -e
N no—x.f.z.-gg.gg
- —
" .
4+
s L o e b da N ai L L it o " A A sk Afarl ik s Her / A ia Ldlbin, Py . :.»..»fo:“r”” f.r»iylf.._in.;tr.l...fck TOPLPW T UL I s 5 0 et I Sii




4 o

T P

oL ¥ -

NI - INIWOW 9NION38 NVId-NI

4: [ ]

orx 81=-'Ni - INIVOW ONIGNIS TVWHON

§1- NI - INIWOW NOIS¥OL

Response to Measured Airloads (13 Modes),

Condition 39 (Pullup at 206 Knots TAS)

Figure 22.

43




SN PR T [ ‘.‘ B
T
i
m
k.
4
w L] O‘NA
g k- }
23 PR
< - !
, 0001’000 .m.m IR
r T T T '.'"1 S 1& . ,.
e R &€ R R A ° & ® u * =" A m o
m ot 97-'Nl - INIWOW ONION38 INVId-NI ’ 1-Ni - INWOW NOISHOL .wm
s |
o
&3
33
o
e(
no
8.3
a
(7]
L
3

Condition

Figure 23.

~

L

01 X O1-'NI - INIKOW ONIONIS TYWUON

s

f

PRI . [T ST

2 e g VIV TN o

.
s

o Nyats o y < . g s . . " . . N gt - gl . Ag bt il ;o ki

WY Hee s SIS e e e Lt v o R o o o8 i it el A St 2 ket ekt et niid OV PR e alin et i i AN b Es AR ¢ Skl AL, e RO TR DR




.
'
D T S Y T Y A Y AP A, Yoyt non 7 PR, RN BTTO (Y b b ot

- ) % 2 ]
g g i 8 8
» “‘
.S
mmuauonssnommu.rum B ° ER°8Y§
m o 1= NI ~ INIWOW ONIONIE NVId-NI @1-'NI - INIWOW NOIS¥OL
-]
&
H
:
M
m X
8 8
1]
[ ]
- P W 1 R Q ~ L hd v ~ L) o~ ~ - Ne © "~

o X 81-'Ni - INJWOW ONION38 TVYWUON

-
-

[}
-2 §
l.m

Response to Measured Airloads (13 Modes),

Condition 43 (Pullup at 163 Knots TAS)

Figure 2.

45

" e et

"
Sh




STA 15
ST
'

»
ANGE -

— | S .

B = ER°R
NI - INIWOW NOISHOL

-— l‘
lﬂw ] A
T % & » . .
8 C & e * § -
-8 ‘m
Y J _ N 1,,.4..
A v - -- _ ot

Qo x 1= NI - ININOW ONION3S TVWUON

46

Response to Measnred Airloads {13 Modes),

Condition ub (Pullvp at 162 Knots TAS)
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Airloeds, Cornell Program, Airloads, Cornell Prograrm,
Condition 20 (Transition) Condition 22 {(Flare)
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Airloads, Coinell Progranm,
Condition 43 {Pullup at
163 Knots TAS)
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Airloads, Cornell Program,
Condition UB (Right Turn at
124 Knots TAS)
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